Telecommunication


Telecommunication
Telecommunication is the exchange of signs, signals, messages, words, writings, images and sounds or information of any nature by wire, radio, optical or other electromagnetic systems.
Telecommunication occurs when the exchange of information between communication participants includes the use of technology. It is transmitted through a transmission medium, such as over physical media, for example, over electrical cable, or via electromagnetic radiation through space such as radio or light.

Such transmission paths are often divided into communication channels which afford the advantages of multiplexing. Since the Latin term communicatio is considered the social process of information exchange, the term telecommunications is often used in its plural form because it involves many different technologies.
Early means of communicating over a distance included visual signals, such as beacons, smoke signals, semaphore telegraphs, signal flags and optical heliographs.

Other examples of pre-modern long-distance communication included audio messages such as coded drumbeats, lung-blown horns, and loud whistles. 20th- and 21st-century technologies for long-distance communication usually involve electrical and electromagnetic technologies, such as telegraph, telephone, and teleprinter, networks, radio, microwave transmission, optical fiber, and communications satellites.

A revolution in wireless communication began in the first decade of the 20th century with the pioneering developments in radio communications by Guglielmo Marconi, who won the Nobel Prize in Physics in 1909, and other notable pioneering inventors and developers in the field of electrical and electronic telecommunications. These included Charles Wheatstone and Samuel Morse (inventors of the telegraph), Alexander Graham Bell (inventor of the telephone), Edwin Armstrong and Lee de Forest (inventors of radio), as well as Vladimir K. Zworykin, John Logie Baird and Philo Farnsworth (some of the inventors of television).

 Society 

Telecommunication has a significant social, cultural and economic impact on modern society. In 2008, estimates placed the telecommunication industry's revenue at $4.7 trillion or just under 3 percent of the gross world product (official exchange rate). Several following sections discuss the impact of telecommunication on society.

Radio and television


In a broadcast system, the central high-powered broadcast tower transmits a high-frequency electromagnetic wave to numerous low-powered receivers. The high-frequency wave sent by the tower is modulated with a signal containing visual or audio information. The receiver is then tuned so as to pick up the high-frequency wave and a demodulator is used to retrieve the signal containing the visual or audio information. The broadcast signal can be either analog (signal is varied continuously with respect to the information) or digital (information is encoded as a set of discrete values).

The broadcast media industry is at a critical turning point in its development, with many countries moving from analog to digital broadcasts. This move is made possible by the production of cheaper, faster and more capable integrated circuits. The chief advantage of digital broadcasts is that they prevent a number of complaints common to traditional analog broadcasts. For television, this includes the elimination of problems such as snowy pictures, ghosting and other distortion. These occur because of the nature of analog transmission, which means that perturbations due to noise will be evident in the final output. Digital transmission overcomes this problem because digital signals are reduced to discrete values upon reception and hence small perturbations do not affect the final output. In a simplified example, if a binary message 1011 was transmitted with signal amplitudes [1.0 0.0 1.0 1.0] and received with signal amplitudes [0.9 0.2 1.1 0.9] it would still decode to the binary message 1011— a perfect reproduction of what was sent. From this example, a problem with digital transmissions can also be seen in that if the noise is great enough it can significantly alter the decoded message. Using forward error correction a receiver can correct a handful of bit errors in the resulting message but too much noise will lead to incomprehensible output and hence a breakdown of the transmission.


However, despite the pending switch to digital, analog television remains being transmitted in most countries. An exception is the United States that ended analog television transmission (by all but the very low-power TV stations) on 12 June 2009. 

after twice delaying the switchover deadline. Kenya also ended analog television transmission in December 2014 after multiple delays. For analog television, there were three standards in use for broadcasting color TV (see a map on adoption here). These are known as PAL (German designed), NTSC (American designed), and SECAM (French designed). For analog radio, the switch to digital radio is made more difficult by the higher cost of digital receivers.

 The choice of modulation for analog radio is typically between amplitude (AM) or frequency modulation (FM). To achieve stereo playback, an amplitude modulated subcarrier is used for stereo FM, and quadrature amplitude modulation is used for stereo AM or C-QUAM.

Internet


The Internet is a worldwide network of computers and computer networks that communicate with each other using the Internet Protocol (IP). Any computer on the Internet has a unique IP address that can be used by other computers to route information to it. Hence, any computer on the Internet can send a message to any other computer using its IP address. These messages carry with them the originating computer's IP address allowing for two-way communication. The Internet is thus an exchange of messages between computers.

No comments: